Ewin Tang height - How tall is Ewin Tang?
Ewin Tang was born on 2000 in American, is an American computer scientist (born 2000). At 20 years old, Ewin Tang height not available right now. We will update Ewin Tang's height soon as possible.
-
5' 6"
-
6' 5"
-
6' 9"
-
6' 0"
-
6' 3"
Now We discover Ewin Tang's Biography, Age, Physical Stats, Dating/Affairs, Family and career updates. Learn How rich is She in this year and how She spends money? Also learn how She earned most of net worth at the age of 22 years old?
Popular As |
N/A |
Occupation |
N/A |
Ewin Tang Age |
22 years old |
Zodiac Sign |
N/A |
Born |
|
Birthday |
|
Birthplace |
N/A |
Nationality |
American |
We recommend you to check the complete list of Famous People born on .
She is a member of famous Computer with the age 22 years old group.
Ewin Tang Weight & Measurements
Physical Status |
Weight |
Not Available |
Body Measurements |
Not Available |
Eye Color |
Not Available |
Hair Color |
Not Available |
Dating & Relationship status
She is currently single. She is not dating anyone. We don't have much information about She's past relationship and any previous engaged. According to our Database, She has no children.
Family |
Parents |
Not Available |
Husband |
Not Available |
Sibling |
Not Available |
Children |
Not Available |
Ewin Tang Net Worth
She net worth has been growing significantly in 2021-22. So, how much is Ewin Tang worth at the age of 22 years old? Ewin Tang’s income source is mostly from being a successful Computer. She is from American. We have estimated
Ewin Tang's net worth
, money, salary, income, and assets.
Net Worth in 2022 |
$1 Million - $5 Million |
Salary in 2022 |
Under Review |
Net Worth in 2021 |
Pending |
Salary in 2021 |
Under Review |
House |
Not Available |
Cars |
Not Available |
Source of Income |
Computer |
Ewin Tang Social Network
Timeline
There was wide media coverage in response to Tang's work on using classical computing rather than quantum computing to tackle the recommendation problem, due to the perception that it eliminates one of the best examples of quantum speedup. Some researchers came to the defence of quantum computing such as Robert Young (Director of the University of Lancaster's Quantum Technology Centre), who said in a BBC news article, "If we hadn't invested in quantum computing, the quantum algorithm that inspired [Miss] Tang wouldn't have existed". Tang herself notes the divisive nature of comparing classical to quantum algorithms, and the trepidation of proving her algorithm to her adviser, "I started believing there is a fast classical algorithm, but I couldn’t really prove it to myself because Scott [Aaronson] seemed to think there wasn’t one, and he was the authority".
At the age of 18, Tang was named as one of Forbes 30 Under 30 for 2019 due to her work in developing computing methods that allow classical computers to handle tasks previously deemed only possible with a quantum computer.
Her first work in quantum computing was her 2018 thesis dissertation titled A quantum-inspired classical algorithm for recommendation systems, supervised by Scott Aaronson, allowing her to complete two undergraduate degrees in computer science and in pure mathematics from the UT Austin. This work details a new algorithm that solves the recommendation problem; for example, how does Amazon or Netflix predict which books or movies a specific consumer will personally enjoy? A linear algebraic approach of the problem is the following: given m users, and n products, alongside incomplete data about which products the users prefer (organised in a binary tree data structure) where there are not too many ways the users can vary their preferences (called low-rank matrices), what are the products that a given user may want to buy? A common linear algebraic classical strategy to solve this problem is to reconstruct an approximation of the full preference matrix and use it to predict the next preferred product. Such a strategy uses at least a time polynomial in the matrix dimension. In 2016, Iordanis Kerenidis and Anupam Prakash, found an exponentially faster quantum algorithm; this algorithm uses the HHL algorithm to sample the product directly from an approximation of the preference matrix without reconstructing the matrix itself, thus avoiding the polynomial limit mentioned above. Tang's classical algorithm, inspired by the fast quantum algorithm of Kerenidis and Prakash, is able to perform the same calculations but on a normal computer without the need for quantum machine learning. Both approaches run in polylogarithmic time which means the total computation time scales with the logarithm of the problem variables such as the total number of products and users, except Tang utilises a classical replication of the quantum sampling techniques. Prior to Tang's results, it was widely assumed that no fast classical algorithm existed; Kerenidis and Prakash did not attempt to study the classical solution, and the task assigned to Tang by Aaronson was to prove its non existence. As he said, "that seemed to [him] like an important 't' to cross to complete this story". Before Tang's research was made public, she and Aaronson attended a quantum computing workshop at the University of California where Tang presented in front of an audience that included Kerenidis and Prakash on June 18 and 19 2018. After four hours of questioning, the consensus was that Tang's classical algorithm seemed correct. The recommendation problem was one of a handful of projects offered by Aaronson, which was chosen reluctantly by Tang: "I was hesitant because it seemed like a hard problem when I looked at it, but it was the easiest of the problems he gave me".
In 2018 Tang was named as a University of Texas at Austin Dean's Honored Graduate in computer science, having maintained a 4.0 grade-point average.
Tang skipped the fourth, fifth, and sixth grades in order to enroll at the University of Texas at Austin at the age of 14. Tang's first experience of research involved working on in vivo imaging for biomedical research such as optical probes to view polarised macrophages during foreign body reactions, bacterial infection, fibrin deposition, and real-time detection of neutrophil responses. In 2014 Tang was awarded an Davidson Fellow Honorable Mention for her work on an optical imaging probe for real-time detection of infection. In 2017 she took a class on quantum information taught by Scott Aaronson, who would soon become her dissertation adviser. Aaronson recognised Tang as an "unusually talented student" and presented her with a range of research projects to choose from; among them was the recommendation problem.
Ewin Tang (born 2000) is a computer scientist at the University of Washington. She was named as one of 2019 Science Forbes 30 Under 30 for her work developing algorithms for classical computers to perform calculations that were previously deemed only possible with quantum computers, research that began under the supervision of Scott Aaronson when Tang was only a teenager.